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In this article Winograd’s algorithm for computing the discrete Fourier transform
(DFT) is extended considerably for certain large transform lengths. This is accomplished
by performing the cyclic convolution, required by Winograd’s method, by a fast
transform over certain complex integer fields developed previously by the authors. This
new algorithm requires fewer multiplications than either the standard fast Fourier
transform (FFT) or Winograd’s more conventional algorithm.

I. Introduction

Several authors (Refs. 1-12) have shown that transforms
over finite fields or rings can be used to compute circular
convolutions without round-off error. Recently, Winograd
(Ref. 13) developed a new class of algorithms that depend
heavily on the computation of a cyclic convolution for
computing the conventional discrete Fourier transform (DFT).
This new algorithm, for a few hundred transform points,
requires substantially fewer multiplications than the conven-
tional fast Fourier transform (FFT) algorithm.

The authors (Ref. 5) defined a special class of finite
Fourier-like transforms over GF(g?) where g= 2P -1 is a
Mersene prime for p = 2,3,5,7,13,17,19,31,61 . . .. These
transforms have a transform length of d points, where d|8p.
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The advantage of this transform over others is that it can be
accomplished simply by circular shifts instead of by multipli-
cations (Ref. 11).

In this paper, it is shown that Winograd’s algorithm can be
combined with the above-mentioned Fourier-like transform
over GF(g?) to yield a new hybrid algorithm for computing
the discrete Fourier transform (DFT). By this means a fast
method for accurately computing the DFT of a sequence of
complex numbers of very long transform lengths is obtained.

ll. Cyclic Convolution

The following algorithm for the cyclic convolution of two
sequences is based on ideas due to Winograd (Ref. 13). Let the
field of rationals be R. Also let X(u)= x, +x,u +x,u?
toot xutl Y(u)= yotyutyu? +oo 4y utl be
two polynomials over R. The product T(v)= X(u) * Y(u) can
be computed by



2n-2

T(w) = X(u) - Y(u) mod H (- a) (1)
=0

It is shown in (Ref. 13) that a minimum of 2n - 1 multiplica-
tions are needed to compute Eq. (1).

It is readily shown that the cyclic convolution of X() and
Y(u) is the set of coefficients of the polynomial

T'(w)= X(u) + Y(u) mod (" - 1)

Let the polynomial u” - 1 be factored into irreducible
relatively prime factors, i.e.,

K
- 1= J] s®
i=1
where
(g,(0), &) = 1 fori =]
Then T'(u) mod giu) for i = 1,2,. . . ,k can be computed,
using Eq. (1). Finally, the Chinese Remainder Theorem is used

to evaluate 7(u) from these residues. The above summarizes
Winograd’s method for performing a cyclic convolution.

The following theorem is due to Winograd (Ref. 14).

Theorem 1. Let a and b be relatively prime positive integers
and 4 be the cyclic ab X ab matiix, given by

A(x,y) = f(x +y moda - b), 0<xy<ab

If 7 is a permutation of the set of integers {0, 1,... ab~11,
let

B(x,y) = A(n(x), 7(y))

Then there exists a permutation 7 such that, if B is partitioned
into b X b submatrices, each submatrix is cyclic and the
submatrices form an a X « cyclic matrices.

It was shown by Winograd (Ref. 14) that the number of
multiplications needed to perform a circular convolution of

2,3,4,5 and 6 points is 2,4,5,10 and 8 multiplications,
respectively. To compute the cyclic convolution of two longer
sequences of complex integers, a d-point transform over
GF(q?) where d|8p is utilized here. Since the latter transform
can be evaluted without multiplications (Ref. 11), it can be
used with considerable advantage to compute a cyclic convolu-
tion without roundoff error of two d-point complex number
sequences. Hence, for the transform over GF(g?), the number
of integer complex multiplications needed to perform a
circular convolution is precisely d.

lll. The DFT When Transform Length Is a
Primed = q'

The DFT is defined by
d-1 .
AJ. = E aiw”
i=0

where w is a dth root of unity. Let

d-1
Ao = E a (22)
=0
and
A].=a0+B]. for j = 1,2, ,d-1
where
d-1
B] = Z aiw"
i=1
That is, let
B = Wa (2b)

where W is the (d - 1) X (d - 1) matrix (w”) and @, B are the
column matrices (g,) and (B,), respectively. If d=q is a
prime, then, by Ref. 12 one can find an element & in GF(q")
that generates its cyclic multiplicative subgroup of ¢’ ~ 1
elements. Using the element a a cyclic permutation of the
elements of GF(g") can be defined by

1, 2,...,4-2,4 -1
a = , , (20)

135



With this permutation, one can permute the ind@ces_ofB_, a W
defined in Eq. (2b) so that the matrix W = (w®?9())

- is
, J#0°
cyclic. That is, l
q'-1
= a(i)o(j)
By ZomW
i=1
q'-1
= o (i+])
a5V
i=1
for
Y,
j=12,...,q4 -1 (3)

Thus, B, is a cyclic convolution of @, and w?() for j =
1,2,...,q"- 1.

Let¢' - 1 =p, - p,---p, be the factorization of g’ - 1
into prime integers. If one letsa, =p, -p,---p,_ andb, =
p,, by Theorem 1 the cyclic matrix can be partitioned into
bf = pf matrices of size a, X a,. Next let a,=a, X b2, where
@, =Py "P,,and by, =p,_, . Ifa,isnot aprime, then each
a, X a, cyclic matrix can be partitioned into b% matrices of
size a, X a,. In general, a; = a;,, * b,,,, where b,, | is a prime.
If @,y # 1, then each g, X g; cyclic matrix can be partitioned
into b2, matrices of size a;, | X a;,,. Otherwise, the proce-
dure terminates. If the number of multiplications used to
compute’ the cyclic convolution of p; points is m; for i=
1,2,...,r, then the number of multiplications for computing a
q'-point DFT isequal toN=m, ~m, ---m,.

For most applications the two Mersenne primes 23! - 1
and 261 -1 will provide enough bit accuracy and dynamic
range for computing the DFT. For these primes, we choose the
prime ¢’ to have the form

q’: 1+a'22-p

where 22 - pl(2P - 1)> - 1 forp =31 or 61 and ¢ = 3 or 5.
Such values for the prime ¢’ are 373, 733, 1861, and 2441. If
d =¢q' is the transform length of the DFT, then, by Theorem 1,
there exists a permutation of rows and columns so that the
cyclic matrix W can be partitioned into blocks of (22 « p) X
(22 - p) cyclic matrices, such that the blocks form an a X a
cyclic matrix. A cyclic convolution of 2=3 or 5 complex
number points can be accomplished by Winograd’s algorithm.
As it was mentioned in the last section, the transform of
length 22 « p over GF(q?) can be used to compute the cyclic
convolution of 22 + p complex number points. The number of
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multiplications needed to perform this convolution is 22 - p.
Hence for a prime ¢’ the total number of multiplications,
needed to perform a DFT of d = ¢’ complex number points is
shown in Table 1. To illustrate the above procedure consider
the following example.

Example. Consider the DFT for d = 7 points. Let the input
function be defined by

a, = 1 +70 0<n<1
= 0+70 2<n<6
By Eq. (22), this transform is
6
A, = D @, = 2+70 (3a)
i=0
and
A; = ay+b, for j=12,...,6 (3b)
where

For d = 7, the permutation o is given by

1,2,3,4,5,6

3,2,6,4,5,1

Applying the above permutation to Eq. (3b), one obtains
B=Waas

b3 w2 wl w* wd wl wi a,
b2 wo w* w® wl w3 w? a,
b6 w* w w! w3 w? wb a,
b4 i w wt w? w? wt wt a,
b5 wl w3 w? wb w* w? ag
b w3 w2 wé w wd w! a



By Theorem 1, there exists a permutation 7 of rows and
columns so that the above cyclic matrix can be partitioned
into 2 X 2 block matrix of 3 X 3 cyclic blocks as follows

b3 w? w! wt w® wo w? 0
b, wh wt w? wé w3 w® 0
b6 w? w? wl w3 ws wb 0
b, i w® we w3 w2 w! wh 0
b2 wo w3 w® wl w* w? 1

This matrix equation has the block forms,

B\ (€ D Zl)
32 D C Z2
[Pz D -2y )
(C+D)(Z, +2,)~(C-D)(Z, - Z,)
E+F
= 2! ) )
E-F

Since C and D are 3 X 3 cyclic matrices, it is evident that the
matrices C+ D and C - D are also 3 X 3 cyclic matrices. In (4),
Eis

e, -0.445, 1.247,-1.802 0
E= |e | = 1.247, -1.802, -0.445 1
e, -1.802, -0.445, 1.247 0

(5)

where approximately 1/2Re(w? + w%) = -0.445, 1/2Re(w! +
w®) = 1.247, etc. Let a, =-1.802, a; =-0.445, a, = 1.247
and v, =0, y; = 1, y, = 0. Then the matrix defined in Eq. (4)
can be obtained by computing the convolution of the two
sequences a, and b,,. To do this use a transform GF(g?) where
g=23-1.

By (Ref. 6), the sequence of g, is converted first to a
sequence of integers x,, in the dynamic range 4 = 2. Since 2 is
a 374 root of unity the transform over GF(72) of x,, is

3~1
X, = Y x, 2" =-1422% fork=0,12
n=0

Thus X, =0,X, =3,X, = 1.

Similarly, the DFT of sequence y, is

3-1
= - k: L)
Y, = 2. y, 2k =1. 02k
n=0
for
k=012

That is, Yy = 1, Y, =2, Y, =4 But £, = X, + Y., ie,
E,=0,F, =6, F, =4. These are the only integer multiplica-
tions needed to perform this DFT. The inverse transform of
£, is

k

E +27"% for

. > by k=012

oreg=1,e =~1,ez=0.

1

In a similar fashion matrix F, given in Eq. (4) can also be
obtained as f, = -7, f, =7+ 0, f, = -1. Thus, by Eq. (4), one
obtains by = 1/2], by =~ 1/25 by =(1-1)/2,b, = (1 +1)/2, b
== 1/2, bs = - /2. Hence, finally 4, =2+70,4, =1+1/2,
Ay =1/2+00,4;=1/23-1),A4,=1/2(3+1), A5 =1/2 +10,
Ag = 1~ 1/21. For this example, the dynamic range of GF(7)
is inadequate. There is a large truncation error due to the
approximation of the roots of unity. Evidently, the DFT in
this example has an accuracy of precisely 2 binary digits,
including the sign bit. This example, though only illustrative,
suggests that the large finite fields given above have more than
adequate dynamic range to compute the DFT with small
fruncation error.

IV. Transforms of Very Long Sequences

In order to compute the DFT of much longer sequences
than considered in the last section, let d=d, -d,...d,,
where (d;,d;)=1 for i #/. By using the Chinese Remainder
Theorem (Ref. 15), it is shown by Winograd in (Ref. 13) that
the DFT matrix W can be transformed into the direct product
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of W, W,,...,W,, where W, is the matrix of a d;-point DFT.
Assume the number of multiplications used to perform the
dipoint DFT for i=12,...,r is m;. Then, the number of
multiplications for computing a d-point DFT is N=
m, *m, ...m,. To illustrate this, see the example for com-
puting a 12-point DFT given in Ref. 14. By the same proce-
dure used in the computation of this example, the number of
integer multiplications needed to perform the transforms of

longer sequences of complex numbers can be obtained by
using Table 1 above and Table 1 in Ref. 13. These numbers are
given in Table 2. The present algorithm, and conventional FFT
algorithm (Ref. 16) are compared in Table 2 by giving the
number of real multiplications needed to perform these algo-
rithms. The number of real multiplications needed to perform
a transform of a few thousand points is given in Table 2 of
Ref. 13,
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Table I. Complexity of complex number DFT of
prime number length-

No. of Integer

d=p p-1 Complex
Multiplications
373 22.3.31 496
733 22.3.61 976
1831 2:3.5.61 4880
1861 22.3.5.31 4960
2441 23.5.61 4880

Table 2. Complexity of new algorithm for DFT

New algorithm Radix-2 FFT
d Factors Nq ir}teg?r I\{o.'rea%
multiplications multiplications
complex data 2dlog,d
4096 212 98,304
4476 373 x 4% 3 23,904
8192 213 212,992
8796 733X 4% 3 46,944
16384 214 458,752
20888 373X 8% 7 143,424
32768 215 983,040
41048 733 X 8 X 7 281,664
62664 373X 8 X 7X3 430,272
65536 216 2,097,152
123144 733X 8 X 7 X 3 844,992
131072 217 4,456,448
262144 218 9,437,184
268560 373X 16 X 9X 5 2,796,768
524288 219 19,922,944
527760 733X 16 X 9% 5 5,492,448
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